A Levinson-like algorithm for symmetric positive definite semiseparable plus diagonal matrices
نویسندگان
چکیده
In this paper a Levinson-like algorithm is derived for solving symmetric positive definite semiseparable plus diagonal systems of equations. In a first part we solve a Yule-Walker-like system of equations. Based on this O(n) solver an algorithm for a general right-hand side is derived. The new method has a linear complexity and takes 19n − 13 operations. The relation between the algorithm and an upper triangular decomposition of the inverse of the semiseparable plus diagonal matrices is investigated. Numerical experiments are included.
منابع مشابه
A Cholesky Lr Algorithm for the Positive Definite Symmetric Diagonal-plus- Semiseparable Eigenproblem
We present a Cholesky LR algorithm with Laguerre’s shift for computing the eigenvalues of a positive definite symmetric diagonal-plus-semiseparable matrix. By exploiting the semiseparable structure, each step of the method can be performed in linear time.
متن کاملA Levinson-like algorithm for symmetric strongly nonsingular higher order semiseparable plus band matrices
In this paper we will derive a solver for a symmetric strongly nonsingular higher order generator representable semiseparable plus band matrix. The solver we will derive is based on the Levinson algorithm, which is used for solving strongly nonsingular Toeplitz systems. In a first part an O(p 2 n) solver for a semiseparable matrix of semiseparability rank p is derived, and in a second part we d...
متن کاملOrthogonal similarity transformation of a symmetric matrix into a diagonal-plus-semiseparable one with free choice of the diagonal
It is well-known how any symmetric matrix can be transformed into a similar tridiagonal one [1, 2]. This orthogonal similarity transformation forms the basic step for various algorithms. For example if one wants to compute the eigenvalues of a symmetric matrix, one can rst transform it into a similar tridiagonal one and then compute the eigenvalues of this tridiagonal matrix. Very recently an a...
متن کاملHomotopy algorithm for the symmetric diagonal-plus-semiseparable eigenvalue problem
A dense symmetric matrix can be reduced into a similar diagonalplus-semiseparable one by means of orthogonal similarity transformations. This makes such a diagonal-plus-semiseparable representation a good alternative to the tridiagonal one when solving dense linear algebra problems. For symmetric tridiagonal matrices there have been developed different homotopy eigensolvers. We present a homoto...
متن کاملA multiple shift QR-step for structured rank matrices
Eigenvalue computations for structured rank matrices are the subject of many investigations nowadays. There exist methods for transforming matrices into structured rank form, QR-algorithms for semiseparable and semiseparable plus diagonal form, methods for reducing structured rank matrices efficiently to Hessenberg form and so forth. Eigenvalue computations for the symmetric case, involving sem...
متن کامل